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Abstract

Face recognition in real-world conditions requires the ability to deal with a number
of conditions, such as variations in pose, illumination and expression. In this paper, we
focus on variations in head pose and use a computationally efficient regression-based
approach for synthesising face images in different poses, which are used to extend the
face recognition training set. In this data-driven approach, the correspondences between
facial landmark points in frontal and non-frontal views are learnt offline from manually
annotated training data via Gaussian Process Regression. We then use this learner to
synthesise non-frontal face images from any unseen frontal image. To demonstrate the
utility of this approach, two frontal face recognition systems (the commonly used PCA
and the recent Multi-Region Histograms) are augmented with synthesised non-frontal
views for each person. This synthesis and augmentation approach is experimentally
validated on the FERET dataset, showing a considerable improvement in recognition
rates for ±40◦ and ±60◦ views, while maintaining high recognition rates for ±15◦ and
±25◦ views.

1 Introduction
A major challenge for automatic face based identity inference is the shear magnitude of
uncontrolled factors than can result in a considerable change of shape and appearance, such
as expression, illumination and pose. The problem is complicated further when only one
image per person is available for training. Previous approaches for addressing the specific
problem of pose variations include 3D deformable models (3DMM) [4, 5], parts-based
probabilistic approaches [7, 15] and tied factor analysis [12].

The system presented in [4] first fits a 3D model to a given probe image followed by
computing a set of model coefficients which are then used for finding the best match in a
database. In [5], another 3DMM based approach was presented, which extracted 3D shape,
texture and a set of 3D scene parameters. A synthetic frontal view of the probe image was
then generated, followed by employing a view-based recognition algorithm to compare the
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Figure 1: Conceptual example of the overall synthesis and augmentation approach for
pose-robust recognition.

synthetic frontal image with a database of frontal images. There are several drawbacks to the
above 3DMM approaches, which may limit their applicability: (i) automatically achieving
accurate fitting, across different poses, is a very difficult task [7], (ii) heavy reliance on
precise initialisation of the fitting procedure, (iii) the fitting procedure is computationally
expensive.

In [15], the problem was approached by extending the training dataset with artificially
synthesised statistical models of face patches (rather than images) for non-frontal views. In
[7], a patch-based approach was proposed that models the joint probability of gallery and
probe images across different poses. In [12], a purely machine learning based approach for
pose-robust recognition was presented, which creates a generative model that best represents
the changes in the face image induced by pose variation.

In this paper, we present an approach that uses a data driven and computationally efficient
2D technique for the synthesis of high quality non-frontal faces from a single frontal input
face. The technique is based on Active Appearance Models (AAM) [6] and Gaussian Process
Regression (GPR) [13]. The synthesised faces can then be used for extending the training set
for each person, enabling existing 2D face recognition algorithms to improve their performance
when dealing with pose variations. A conceptual overview of the proposed synthesis and
augmentation approach is given in Figure 1.

We continue the paper as follows. The regression based method for construction of
synthetic non-frontal images is presented in Section 2. Section 3 details the experiments and
discusses the results. Section 4 provides the conclusions and an outlook on future work.

2 Constructing Synthetic Non-Frontal Images
Given a gallery containing one frontal image per person, the goal is to generate high quality
synthetic images at various poses using original shape and texture information. We use a
regression-based approach to generate synthetic images at various poses (e.g. covering the
range of −67.5◦ to +67.5◦ on the x-axis). For every image in the gallery, a set of landmark
points is extracted by using AAMs [6] (Section 2.1). These landmark points are used by the
Non-Frontal Image Synthesiser (Section 2.2) to generate synthetic images at various poses.
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2.1 Automatic Extraction of Landmark Points From Frontal Images

We use offline AAM fitting in order to obtain the locations of landmark points in a given
frontal face image. For training the AAM that is used to perform fitting on unseen faces, we
manually annotated frontal images for a total of 400 people from the CMU PIE [18], Face
Pointing [9] and FERET [11] databases. Our proposed framework uses the Simultaneous
Inverse Compositional (SIC) method [2] to perform fitting. SIC is one of the most powerful
generative fitting method in which the update model is generated directly from background-
free components (i.e. the mean appearance and their modes of variation) and, hence, has
no specialisation to any particular background. Since the construction of synthetic images
is an offline process, finding accurate landmark point locations takes priority over speed,
making SIC best suited for this purpose. Moreover, if the initialisation1 of the AAM fitting
procedure is close to the optimum, the problem of performing AAM fitting on the frontal
images is relatively simpler as compared to AAM fitting on images with varying viewpoints.

2.2 Non-Frontal Image Synthesiser

Once the locations of the landmark points from the gallery images have been extracted, we
use a regression-based approach [1] to generate synthetic images at various poses. We first
learn the correspondence between the landmark points of the set of frontal images exhibiting
arbitrary facial expressions and their corresponding non-frontal images at arbitrary pose.
Once this learner has been trained, a synthetic image of any other unseen face (at a pose
for which the learner has been trained) can be generated by using a regression method
such as GPR [13]. Regression is used to predict the locations of the new landmark points,
followed by warping of the texture from the original frontal image. The detailed step-by-step
procedure is as follows.

We start by learning the correspondence between the landmark points of the set of frontal
images and their corresponding non-frontal images at an arbitrary, but known, pose (e.g.
between the frontal and 45◦ pose). We extract the Normalisation (N), Centroid (C) and
Point (P) vectors from every frontal and its corresponding non-frontal image.

Normalisation Vector (N) - 1D vector containing the normalisation distances. Horizontal
normalisation distance (Nh) is the horizontal distance between the eye corners. Vertical
normalisation distance (Nv) is the vertical distance between the eye corners and the
nose tip (also the reference point in the normalised frame).

N = [Nh;Nv]T (1)

Centroid Vector (C) - 1D vector containing the location of the centroids of six individual
facial features (left and right eyebrows, left and right eyes, nose and mouth) in the
normalised frame. For this, a dictionary of landmark points is created that contains
the information about which of the six facial features each of the n landmark points
represents. Hence, if the number of landmark points c represents a facial feature, e.g.
the mouth, then the centroid (~x,~y) of this facial feature is computed as ~x =

(
∑

c
i=1 xi

c

)
1 For the experiments presented in this paper, we use faceAPI (Seeing Machines) to detect the location of the

face, which is required to initialise the AAM fitting procedure. However, we wish to highlight that any suitably
accurate face detector will suffice and that our approach is not dependent on a particular face detector.
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Algorithm 1: Learning the Regression Model
Require: N, C and P from m frontal and non-frontal images.

Extract Nf from frontal and Nn from non-frontal image1

Nf = [Nh;Nv]T Nn = [N′h;N′v]
T

Extract Cf from frontal and Cn from non-frontal image2

Cf = [~x1;~y1; . . . ;~x6;~y6]T Cn = [~x′1;~y′1; . . . ;~x′6;~y′6]
T

Extract Pf from frontal and Pn from non-frontal image3

Pf = [x1;y1; . . . ;xn;yn]T Pn = [x′1;y′1; . . . ;x′n;y′n]
T

There are m× 3 pairs of normalisation, centroid and point vectors, respectively, with each4
pair representing a frontal and its corresponding non-frontal image.
Construct 3 different training sets5

TN =
{
(Nf

i ,N
n
i ) | i ∈ (1,2, . . . ,m)

}
TC =

{
(Cf

i ,C
n
i ) | i ∈ (1,2, . . . ,m)

}
TP =

{
(Pf

i ,P
n
i ) | i ∈ (1,2, . . . ,m)

}
Use regression to learn 3 different sets of regression models RN , RC , RP6
for predicting the normalisation, centroid and point vector respectively, where

RN =
{

RNh , RNv

}
RC =

{
RCi | i ∈ (1,2, . . . ,12)

}
RP =

{
RPi | i ∈ (1,2, . . . ,2n)

}
Here, R represents the regression model learned over a particular training set. GPR [13] is
used for the experiments in this paper.

and ~y =
(

∑
c
i=1 yi

c

)
, where (xi,yi) is the location of each landmark point representing

this facial feature in the normalised frame.

C = [~x1;~y1; . . . ;~x6;~y6]T (2)

Point Vector (P) - 1D vector containing the location of each of the n landmark points in the
normalised frame.

P = [x1;y1; . . . ;xn;yn]T (3)

Once N, C and P have been extracted, we learn the regression model for the construction of
synthetic images as explained in Algorithm 1.

With the location of the landmark points, extracted by the AAM (see Section 2.1) from
every gallery (frontal) image, at hand, the landmark points are normalised to remove any
minor variation in the roll present in the gallery images (e.g. samples in rows 2-5 of Figure
3). This is simply done by applying a Euclidean transformation to the landmark points,
taking the landmark points representing the corner of the eyes and tip of the nose as reference
points. These normalised landmark points can now be used to generate the synthetic images
by predicting the new landmark locations via the above learnt regression model and warping
the texture from the frontal gallery image. We use Piecewise Affine Warping (PAW) [6,
8] for warping the texture from the frontal images to the new landmark locations. Next,
all invalid pixel locations inside the convex hull of the canonical shape are filled by their
nearest-neighbours (NN) and the background pixels are filled with the mean value of texture
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Algorithm 2: Constructing the Synthetic Images
Require: Landmark points for the frontal gallery image, Img, from AAM.

Normalise Img to remove the variation in roll.1
Extract Ntest , Ctest , Ptest .2
Use RN , RC and RP (Algorithm 1) to predict N′test , C′test and P′test .3
P′test contains the new location of each of the n landmark points w.r.t. the origin in the4
normalised frame. Arrange the landmark points in the normalised frame accordingly.
C′test contains the new location of six centroids, representing six individual facial features,5
w.r.t. the origin in the normalised frame. Arrange these centroids in the normalised frame
accordingly.
Transform the group of landmark points representing each of the six individual facial features6
(arranged in Step 4) to the new centroid locations drawn in Step 5.
De-normalise the constructed shape using the N′test .7
for i = 1 to n do8

xreal
i = x

′
i.(N

′

h) where . denotes multiplication9

yreal
i = y

′
i.(N

′
v)10

Warp the texture from Img to the new locations using PAW.11
Fill invalid pixel locations with NN and background pixels with mean texture.12

to complete the synthetic image (the mean value is used to reduce the sharp transition from
face edges to the background, in order to obtain a degree of resemblance with real non-frontal
faces present in the FERET dataset). The step-by-step procedure is given in Algorithm 2.
Figure 2 shows the construction steps for a sample image at a pose of 45◦.

Figure 3 shows synthetic images constructed for a subset of the gallery images. The
high quality of the constructed synthetic images is maintained throughout by virtue of the
non-linear predictor utilised by the regression-based learning approach to predict the new
locations for the landmark points.

3 Experiments and Discussion
We used the CMU PIE database [18] for training the regression model. A total of 970 images
across 50 people (35 males and 15 females), with a face cropped area of approximately
140×150 pixels, were manually annotated with 69 landmarks each. There were 100 images
each for the frontal pose, −22.5◦, ±45◦ and ±67.5◦, and 170 images for +22.5◦, exhibiting
various facial expressions. Six learners were trained (see Section 2.2), one each for predicting
the new landmark locations.

Figure 2: Face synthesis at a pose of 45◦ from a frontal view.
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Figure 3: Synthetic images generated from sample gallery (frontal) images.

We used the b subset of the FERET database [11] to evaluate the usefulness of the
synthetic images in a face recognition scenario. The b subset contains 1800 images of 200
unique subjects. Specifically, each person has 9 pose views: ba (frontal), bb (+60◦), bc
(+40◦), bd (+25◦), be (+15◦), bf (−15◦), bg (−25◦), bh (−40◦) and bi (−60◦). The 200
frontal images were used as the gallery images and 6 synthetic images per subject were
constructed and added to the gallery. The synthetic images were generated for non-frontal
views at the same angles as present in the PIE database. The images from the remaining
views (i.e. bb to bi) were used for testing (i.e. as probes). A conceptual example of the
overall synthesis and augmentation approach was given in Figure 1.

The advantage of using two different databases (i.e. the PIE database for learning the
regression model and the FERET database for evaluating the performance of the synthetic
images) is two-fold. Firstly, constructing the synthetic images from the FERET database
using the regression model learnt on the PIE database demonstrates the high generalisability
of the construction approach. Secondly, it allows testing of the robustness of the face
recognition algorithms for minor pose variations and their suitability to follow the approach
presented in this paper. This is particularly important from a real-world application point of
view. As stated earlier, the new gallery consists of 7 poses, if we consider the out-of-plane
rotation along the x-axis. However in a real-world scenario, it is not necessarily the case that
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the pose of the probe image will be identical to one of the poses. In this case, one would
have to rely on the robustness of the face recognition algorithm w.r.t. minor pose variations.
The experiments presented in this paper simulate this condition throughout by using two
independent databases with minor pose differences between the gallery and probe images.
The 7 poses in the gallery are separated by ∆ = 22.5◦, starting from−67.5◦ to +67.5◦, while
the probe images from the b subset of the FERET database have poses of±15◦, ±25◦, ±40◦

and ±60◦.
To evaluate the utility of the synthetic images in a face recognition scenario, we used

a baseline PCA-based recogniser [3] and the recently proposed Multi-Region Histograms
(MRH) approach [14]. The MRH approach is motivated by the concept of ‘visual words’
used in image categorisation [10], which can be briefly described as follows. A given face is
divided into several fixed and adjacent regions that are further divided into small overlapping
patches. Each patch is represented by a low-dimensional feature vector, followed by represen-
ting each feature vector as a high-dimensional probabilistic histogram. Each entry in the
histogram reflects how well a particular feature vector represents each ‘visual word’, where
the dictionary of visual words is in effect a set of prototype feature vectors. For each region,
the histograms of the underlying patches are then averaged. Two faces are compared through
an L1-norm based distance between corresponding histograms.

For the PCA-based system, each face was represented by a 128-dimensional feature
vector (based on preliminary experiments). The MRH-based face recognition system follows
the 3× 3 region configuration of [14], with 1024-dimensional histograms for each region.
For training, 1000 images from the fa subset of FERET (frontal images) were used for
constructing the PCA-based dimensionality reduction matrix and the visual dictionary for
the MRH approach.

Figure 4 shows the overall performance of the MRH and PCA-based approaches for each
pose variation with and without the use of synthesised faces. Figures 4(a)-4(d) show the
cumulative recognition rates for views at−60◦,−40◦, +40◦ and +60◦, respectively. Rank-1
recognition rates, shown in Figure 4(e), suggest an overall increase in the performance
for both MRH and PCA-based systems (See the supplementary material for the full table
of results). For the MRH-based recogniser, a significant increase in the recognition rate
is obtained for the pose variation of ±40◦ and ±60◦. For other pose variations, a high
recognition accuracy is either maintained or increased (e.g. +25◦). For the PCA-based
recogniser the recognition rates are noticeably increased through the use of synthetic faces.
However, the overall performance is still poorer when compared to the MRH-based recog-
niser.

It should also be noted that the increase in the overall accuracy for the MRH-based
approach is relatively larger than that for the PCA-based recogniser. This is due to the minor
pose variation between the probe images and the pose of the faces in the extended training
set, as stated earlier. The MRH-based approach appears to handle minor pose variations well,
whereas the baseline PCA approach appears to be very sensitive to out-of-plane rotations.
This is further compounded by the fact that the effect of occlusion increases at the extreme
poses closest to profile images. Therefore, the amount of change in the appearance induced
by the pose variations (say of 5−10◦) at extreme poses, such as±60◦, is relatively more than
that induced by the same amount of variation at the poses close to frontal, such as ±15◦.
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(a) Cumulative recognition rates for −60◦
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(b) Cumulative recognition rates for −40◦
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(c) Cumulative recognition rates for +60◦
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(d) Cumulative recognition rates for +40◦
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(e) Rank-1 recognition rates

1 2 3 4 5 6 7 8
0

10

20

30

40

50

60

70

80

90

100

 

 

PCA with Only Frontal Images
PCA with Frontal + Synthetic Images
MRH with Only Frontal Images
MRH with Frontal + Synthetic Images

Figure 4: Comparison of recognition rates obtained by PCA and MRH face recognition
systems on the b subset of FERET database, with and without the use of synthesised faces.
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4 Conclusion

In this paper, we presented a framework for generating high quality synthetic face images at
various poses from a single frontal image, based on Active Appearance Models and Gaussian
Process Regression, that can be used to increase the robustness of any 2D face recognition
algorithm to variations in head pose. To objectively verify the quality of the synthesised
images and to demonstrate an application of the proposed framework, we augmented two
frontal face recognition systems by extending the training set for each person with synthesised
non-frontal faces. Experiments on the FERET dataset show that the robustness of a baseline
PCA approach as well as the recent Multi-Region Histograms method can be considerably
increased when dealing with faces at±40◦ and±60◦ views, while maintaining high recogni-
tion rates for ±15◦ and ±25◦ views. Moreover, the approach works in 2D and is entirely
data-driven, computationally inexpensive and can easily be combined with other face recogni-
tion algorithms than the ones shown here without requiring any major modification.

We are currently working on extending the approach into the 3D domain to enable better
handling of occlusions as well as the construction of synthetic faces at extreme poses (such
as profile views).
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